

Reliability: 5x9s vs 6x9s

(99.999 vs 99.9999)

NTT Docomo: 3GPP Release 15 Overview

Figure 1 Main functions specified in Release 15 for NR, 5GC, and LTE/LTE-Advanced

Source

5G High Level Requirements and Wish List

ITU-R IMT-2020 requirements

Rel.16 URLLC Enhancements

Enhancements for latency and reliability in Radio and E2E

Rel.16 URLLC aims for higher reliability and better efficiency

- R15 use case improvements (e.g. AR/VR)
- New use cases with higher requirements (e.g. factory automation, transport industry, electrical power distribution)

Key Rel.16 SI/WIs	Primary WG
FS_5G_URLLC (<u>SP-180118</u>)	SA2
NR_IIoT (RP-181479)	RAN2
NR_Mob_enh (RP-181433)	RAN2
NR_eURLLC_L1 (RP-181477)	RAN1
NR eMIMO (RP-181453)	RAN1

© Nokia 2018 Source: 3G4G

URLLC Use Cases and Requirements (TS 22.261)

Table 7.2.2-1 Performance requirements for low-latency and high-reliability scenarios.

		I						
Scenario	End-to- end latency	Communication service availability	Reliability	User experienced data rate	Payload size	Traffic density	Connection density	Service area dimension
Discrete automation – motion control	1 ms	99.9999%	99.9999%	1 Mbps up to 10 Mbps	Small	1 Tbps/km ²	100 000/km²	100 x 100 x 30 m
Discrete automation	10 ms	99.99%	99.99%	10 Mbps	Small to big	1 Tbps/km ²	100 000/km ²	1000 x 1000 x 30 m
Process automation – remote control	50 ms	99.9999%	99.9999%	1 Mbps up to 100 Mbps	Small to big	100 Gbps/km²	1 000/km²	300 x 300 x 50 m
Process automation –monitoring	50 ms	99.9%	99.9%	1 Mbps	Small	10 Gbps/km ²	10 000/km ²	300 x 300 x 50
Electricity distribution – medium voltage	25 ms	99.9%	99.9%	10 Mbps	Small to big	10 Gbps/km²	1 000/km²	100 km along power line
Electricity distribution – high voltage	5 ms	99.9999%	99.9999%	10 Mbps	Small	100 Gbps/km ²	1 000/km²	200 km along power line
Intelligent transport systems – infrastructure backhaul	10 ms	99.9999%	99.9999%	10 Mbps	Small to big	10 Gbps/km²	1 000/km²	2 km along a road
Tactile interaction	0,5 ms	[99.999%]	[99.999%]	[Low]	[Small]	[Low]	[Low]	TBC
Remote control	[5 ms]	[99.999%]	[99.999%]	[From low to 10 Mbps]	[Small to big]	[Low]	[Low]	TBC

Various requirements from different URLLC services

© Nokia 2018

Source: 3G4G

What is 5x9s or 99.999% Reliability

- There are $24 \times 60 = 1440$ minutes per day
- For a 365 day year, its 365 x 1440 = 525,600 minutes per year
- 99.999% reliability = 525,600 525,600 x 0.99999 =
 5.256 minutes down time per year
- Total down time allowed = 5.256 minutes per year = 315.36 seconds per year

What is 6x9s or 99.9999% Reliability

- There are $24 \times 60 = 1440$ minutes per day
- For a 365 day year, its 365 x 1440 = 525,600 minutes per year
- 99.9999% reliability = 525,600 525,600 x 0.999999 =
 .5256 minutes down time per year
- Total down time allowed = .5256 minutes per year = 31.536 seconds per year

364G 36

High Availability Chart (Wikipedia)

Availability %	Downtime per year	Downtime per month	Downtime per week	Downtime per day
55.555555% ("nine fives")	162.33 days	13.53 days	74.92 hours	10.67 hours
90% ("one nine")	36.53 days	73.05 hours	16.80 hours	2.40 hours
95% ("one and a half nines")	18.26 days	36.53 hours	8.40 hours	1.20 hours
97%	10.96 days	21.92 hours	5.04 hours	43.20 minutes
98%	7.31 days	14.61 hours	3.36 hours	28.80 minutes
99% ("two nines")	3.65 days	7.31 hours	1.68 hours	14.40 minutes
99.5% ("two and a half nines")	1.83 days	3.65 hours	50.40 minutes	7.20 minutes
99.8%	17.53 hours	87.66 minutes	20.16 minutes	2.88 minutes
99.9% ("three nines")	8.77 hours	43.83 minutes	10.08 minutes	1.44 minutes
99.95% ("three and a half nines")	4.38 hours	21.92 minutes	5.04 minutes	43.20 seconds
99.99% ("four nines")	52.60 minutes	4.38 minutes	1.01 minutes	8.64 seconds
99.995% ("four and a half nines")	26.30 minutes	2.19 minutes	30.24 seconds	4.32 seconds
99.999% ("five nines")	5.26 minutes	26.30 seconds	6.05 seconds	864.00 milliseconds
99.9999% ("six nines")	31.56 seconds	2.63 seconds	604.80 milliseconds	86.40 milliseconds
99.99999% ("seven nines")	3.16 seconds	262.98 milliseconds	60.48 milliseconds	8.64 milliseconds
99.99999% ("eight nines")	315.58 milliseconds	26.30 milliseconds	6.05 milliseconds	864.00 microseconds

Thank You

To learn more, visit:

```
3G4G Website – https://www.3g4g.co.uk/
3G4G Blog – https://blog.3g4g.co.uk/
3G4G Small Cells Blog – https://smallcells.3g4g.co.uk/
Operator Watch - https://operatorwatch.3g4g.co.uk/
```

Follow us on Twitter: https://twitter.com/3g4gUK

Follow us on Facebook: https://www.facebook.com/3g4gUK/

Follow us on Linkedin: https://www.linkedin.com/company/3g4g

Follow us on Slideshare: https://www.slideshare.net/3G4GLtd

Follow us on Youtube: https://www.youtube.com/3G4G5G

©3G4G