

NR Physical Layer Design: NR MIMO

Younsun Kim
3GPP TSG RAN WG1 Vice-Chairman (Samsung)

Considerations for NR-MIMO Specification Design

NR-MIMO Specification Features

Key Features of NR-MIMO

- Make cellular communications over millimeter wave (mmWave) spectrum a reality
 - TTU's 5G requirement to support a peak rate of 20Gbps would not be possible without mmWave
- Improve system performance well beyond LTE
 - ITU's 5G requirement is to achieve spectral efficiency of 3 times that of LTE
- Provide sufficient flexibility for wide range of 5G realizations
 - Tonsidering deployment scenarios, network implementations, supportable spectrum bands, etc.

Higher Frequency Bands (Coverage for mmWave) Multi-beam operation

Higher Frequency Band

Pathloss is proportional to the square of frequency

$$P_{RX} = P_{TX}G_{TX}G_{RX}\left(\frac{\lambda}{4\pi R}\right)^{2}$$

$$= 1 \text{ for Isotropic} \quad \text{Path-loss}$$

$$= P_{TX} \cdot 1 \cdot 1 \cdot \left(\frac{\lambda^{2}}{4\pi}\right)\left(\frac{1}{4\pi R^{2}}\right)$$
Aperture size Spherical area
$$= P_{TX} \cdot 1 \cdot 1 \cdot \left(\frac{c^{2}}{4\pi r}\right)\left(\frac{1}{4\pi R^{2}}\right)$$
(c: speed of light)
Carrier frequency

	2.8 GHz	28 GHz
RX Aperture Size	9.135 cm ²	0.091 cm ²
Path-loss (R=1m)	-41.4 dB	-61.4 dB

4

Higher Frequency Band

- Pathloss of higher frequencies can be overcome by utilizing multi-antennas
 - Multiple Rx antennas to effectively increase aperture size
 - Multiple Tx antennas to direct energy
- NR facilitates the use of multi-antennas in at every stage of the radio operation:
 - Initial/random access
 - Paging
 - Data/control information
 - Mobility handling

Analog and Digital Beamforming

- LTE was designed on the assumption of a fixed analog beam per cell
 - The analog beam provides full coverage throughout the cell at any given time instance
- NR was designed on the concept of multiple steerable analog beams per cell
 - Each analog beam concentrates on a part of a cell at a given time so as to overcome large pathloss
- Digital beamforming is applied on top of analog beamforming in both LTE and NR

Hybrid Beamforming

A combination of digital and analog beamforming, or 'hybrid beamforming' can be used to realize large BF gains without excessively increasing implementation complexity

Example of hybrid beamforming

Single vs Multi-Beams

- In lower frequencies, a single beam can be used to provide wide coverage
- In higher frequencies, multiple beams can be used to extend coverage

Considerations for NR-MIMO Specification Design

NR-MIMO Specification Features

Comparison of NR-MIMO vs LTE MIMO

	LTE Rel-8	LTE-A Pro Rel-15	NR Rel-15
Purpose	Spectral efficiency enhancement	Spectral efficiency enhancement	 Coverage enhancement (especially for above 6GHz) Spectral efficiency enhancement
Multi-beam operation	No specification support	No specification support	Beam measurement, reportingBeam indicationBeam failure recovery
Uplink transmission	 Up to 4 layers per UE Up to 8 layers for MU-MIMO (cyclic shifts for ZC-sequence) 	 Up to 4 layers per UE Up to 8 layers for MU-MIMO (cyclic shifts for ZC-sequence) 	 Up to 4 layers per UE Up to 12 layers for MU-MIMO (orthogonal ports)
Downlink transmission	Up to 4 layers per UE	 Up to 8 layers per UE Up to 4 layers for MU-MIMO (orthogonal ports) 	 Up to 8 layers per UE Up to 12 layers for MU-MIMO (orthogonal ports)
Reference signal	 Fixed pattern, overhead Up to 4 TX antenna ports (CRS) 	 Fixed pattern, overhead Up to 32 TX antenna ports (CSI-RS) 	 Configurable pattern, overhead Up to 32 TX antenna ports (CSI-RS) Support for above 6GHz

Uplink Transmission

- Codebook based and non-codebook based uplink transmissions are supported
 - Codebook based: gNB indicates the uplink beam direction and precoding to the UE
 - Non-codebook based: gNB only indicates the beam direction only

Codebook based Uplink Transmission

2. gNB indicates to UE: Beam direction (SRS index), rank, and transmit precoding for uplink

Non-Codebook based Uplink Transmission

2. gNB indicates to UE: Beam/precoding direction and rank (all included in SRS indices)

Uplink MIMO capability

Op to rank 4 per UE, up to 12 co-scheduled UEs with orthogonal DM-RS ports

Downlink Transmission

- gNB has full control of downlink precoding which can be determined either from channel status report or SRS transmission from UE
 - UE has no knowledge of actual precoding applied at the gNB (UE transparent)
 - OUE only requires the combined effect of precoding and channel for demodulation purpose
- Downlink MIMO capability
 - No prosection Up to rank 8 per UE
 - The state of the s

Channel Status Info: Type-I & Type-II

- S.
- Two different Channel Status Information (CSI) types are supported in NR
- Type-I which is optimized for Single User MIMO transmission with smaller uplink overhead
- Type-II which is optimized for Multi-User MIMO transmission with finer channel information and as a consequence, larger uplink overhead

Type-I Channel Status Information

Terminal selects beam and co-phase (relative phase difference between X-pol antennas) coefficient

Type-II Channel Status Information

Terminal selects multiple beams, amplitude scaling, and phase coefficients for linear combination between the beams

Multi-Beam Operation in NR

Beam Measurement/Reporting

Terminal measures different combinations of TX-RX beams for initial selection and further refinement

Beam Indication

NW indicates beam direction for reference signals, and control/data transmission on downlink/uplink

Beam Failure Report

A low latency procedure for recovering from beam failure

Multi-Beam Operation in NR

Multi-Beam Operation for Initial Access and Data/Control Channel

Beam Failure Recovery

- Due to the narrow beam width when multi-beam operation is in place, the link between the network and terminal is prone to beam failures
 - Unlike out-of-coverage situations, beam failure tends to have dynamic time profile
- Beam failure recovery allows for prompt beam recovery using L1 procedures

NR Reference Signals

- LTE has a 'one size fits all' downlink reference signal design: CRS
 - Timits flexible network deployments, not network energy efficient, not applicable for higher spectrum (>6GHz), not MIMO friendly for large number of antennas
- NR downlink reference signals are tailored for specific roles and can be flexibly adapted for different deployment scenarios and spectrum

NR Reference Signals: DM-RS

NR supports two different types of DMRS

	NR Type 1 DM-RS	NR Type 2 DM-RS											
Orthogonal Ports	Up to 8	Up to 12											
Flexibility	Can be adapted for frequency/time selectivity, robustness, r	, number of co-scheduled UEs for MU-MIMO, etc											
Waveform	CP-OFDM (UL/DL) or DFT-S-OFDM (UL)	CP-OFDM only (UL/DL)											
	IFDMA based	Frequency domain orthogonal cover code based											
Design (figure for single symbol DM-RS)	1 additional symbol 2 additional symbols 3 additional symbols	1 additional symbol 2 additional symbols 3 additional symbols											
Overhead/Port	Higher	Lower											

NR Reference Signals: CSI-RS / TRS

CSI-RS is designed for downlink measurement -> reporting channel status info

Three different types of CSI-RS is supported: Periodic, aperiodic, and semi-persistent CSI-RS

	Periodic CSI-RS	Aperiodic CSI-RS	Semi-Persistent CSI-RS
Orthogonal Ports	Up to 32	Up to 32	Up to 32
Time domain behavior	Periodic transmission once configured	Single transmission when triggered	Periodic transmission once activated until deactivated
Activation /Deactivation	RRC signaling	L1 signaling	MAC CE
Characteristics	No L1 overhead	Low latency	Hybrid of periodic and aperiodic CSI-RS

TRS is designed for time/frequency tracking and estimation of delay/Doppler spread

Onfigured as a CSI-RS with specific parameter restriction (time/freq location, RE pattern, etc)

NR Reference Signals: PTRS

- PTRS is designed for compensation of downlink/uplink phase noise compensation
 - 'Associated' with DM-RS so that receiver can compensate for phase noise during demodulation ത
 - PTRS density in time, frequency is associated with scheduled MCS, bandwidth, respectively

Scheduled MCS	Time domain density
0 <= MCS < MCS ₁	No PTRS
MCS ₁ <= MCS < MCS ₂	Every OFDM symbol
MCS ₂ <= MCS < MCS ₃	Every 2 nd OFDM symbol
MCS ₃ <= MCS < MCS ₄	Every 4 th OFDM symbol

																											[
																											[
	Ε	ve	ry	C	F	D١	M symbol							Every 2 nd OFDM symbol												E١	/eı	ry	4 th	C	F	D١	M s	sy	ml	bol	I			

Scheduled bandwidth	Frequency domain density
$0 \le N_{RB} < N_{RB1}$	No PTRS
$N_{RB1} \leq N_{RB} \leq N_{RB2}$	Every 2 nd RB
$N_{RB2} \leq N_{RB}$	Every 4th RB

NR Reference Signals: SRS

- SRS is designed for evaluation of uplink channel quality and timing
 - Can also be used for downlink channel information when channel reciprocity is applicable
 - Three different types of SRS is supported: Periodic, aperiodic, and semi-persistent SRS (same time domain behavior as that of CSI-RS)
 - SRS carrier switching is supported for transmitting SRS over more than one carrier using a single uplink transmitter
 - Up to 6 OFDM symbols can be used for SRS transmission to increase SRS capacity compared to LTE (Rel-8 LTE supports up to 1 OFDM symbol)

Enhancements on NR-MIMO for Rel-16

- Enhancements on <u>MU-MIMO</u> support:
 - Specify overhead reduction, based on Type II CSI feedback, taking into account the tradeoff between performance and overhead
 - Perform study and, if needed, specify extension of Type II CSI feedback to rank >2
- Enhancements on multi-TRP/panel transmission including improved reliability and robustness with both ideal and non-ideal backhaul:
 - Specify downlink control signalling enhancement(s) for efficient support of non-coherent joint transmission
 - Perform study and, if needed, specify enhancements on uplink control signalling and/or reference signal(s) for non-coherent joint TX
 - Multi-TRP techniques for URLLC requirements are included in this WI
- Enhancements on <u>multi-beam operation</u>, primarily targeting FR2 operation:
 - Perform study and, if needed, specify enhancement(s) on UL and/or DL TX beam selection specified in Rel-15 to reduce latency/overhead
 - Specify UL transmit beam selection for multi-panel operation that facilitates panel-specific beam selection
 - Specify a beam failure recovery for SCell based on the beam failure recovery specified in Rel-15
 - Specify measurement and reporting of either L1-RSRQ or L1-SINR
- Perform study and make conclusion in the first RAN1 meeting after start of the WI, and if needed, specify CSI-RS and DMRS (both DL and UL) enhancement for <u>PAPR reduction</u> for one or multiple layers (no change on RE mapping specified in Rel-15)
- Specify enhancement to allow <u>full power transmission</u> in case of uplink transmission with multiple power amplifiers (assume no change on UE power class)

Thank you!